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Abstract—Cryptocurrency systems can be subject to dean-
onymization attacks by exploiting the network-level communica-
tion on their peer-to-peer network. Adversaries who control a set
of colluding node(s) within the peer-to-peer network can observe
transactions being exchanged and infer the parties involved.
Thus, various network anonymity schemes have been proposed to
mitigate this problem, with some solutions providing theoretical
anonymity guarantees.

In this work, we model such peer-to-peer network anonymity
solutions and evaluate their anonymity guarantees. To do so,
we propose a novel framework that uses Bayesian inference
to obtain the probability distributions linking transactions to
their possible originators. We characterize transaction anonymity
with those distributions, using entropy as metric of adversarial
uncertainty on the originator’s identity. In particular, we model
Dandelion, Dandelion++ and Lightning Network. We study dif-
ferent configurations and demonstrate that none of them offers
acceptable anonymity to their users. For instance, our analysis
reveals that in the widely deployed Lightning Network, with 1%
strategically chosen colluding nodes, the adversary can uniquely
determine the originator for ≈ 50% of the total transactions in
the network. In Dandelion, an adversary that controls 15% of
the nodes has, on average,‘ uncertainty among only 8 possible
originators. Moreover, we observe that due to the way Dandelion
and Dandelion++ are designed, increasing the network size does
not correspond to an increase in the anonymity set of potential
originators. Alarmingly, our longitudinal analysis of the Lightning
Network reveals rather an inverse trend—with the growth of the
network, the overall anonymity decreases.

I. INTRODUCTION

Cryptocurrencies are digital currencies that are neither
issued nor backed by a centralized banking or financial au-
thority. Instead, they rely on the decentralized verification
of cryptographic transactions using blockchain technology,
allowing everyone to join and contribute to securing the trans-
action ledger [38]. Decentralized currencies attempt to address
concerns of the existing banking system, where centralization
implies having entities (banks) with disproportionate power
to exclude users, control financial flows and amass a wealth
of personal financial information on their customers (habits,
lifestyle, spending behaviour, degree of financial desperation)
that can be mined for profiling, sold and end up being
used against the person. A growing number of blockchain-
based cryptocurrencies have been proposed and deployed, with
Bitcoin [5], [3], active for almost a decade now, being the
most popular currency as well as the seminal system that
popularized the concept.

The emergence of blockchain-based cryptocurrency sys-
tems has attracted growing interest to various aspects of the

underlying technologies. The decentralization and scalability
aspects of blockchains have received considerable attention
and are by now well understood [27], [51], [24]. On the
other hand, understanding the privacy properties of these
systems presents additional complexity. Transaction anonymity
requires protection both on-chain and in the underlying peer-
to-peer network used to transport the transaction. Ideally, if a
transaction is considered private it should not be possible for
third parties to identify its source or destination, neither by
analyzing blockchain data, nor by analyzing network traffic
data available to peers. The default process of flooding trans-
actions in the Bitcoin network has however been shown to be
prone to network-level deanonymization attacks [2], [1], [35],
where the public identifier of a transaction originator (public
key) is mapped to its IP address. The subsequently proposed
diffusion technique (a more sophisticated version of flooding)
has also been shown to be vulnerable to deanonymization
by adversaries that control a number of nodes in the Bitcoin
network [20], [19].

Peer-to-peer schemes with privacy-enhanced routing fea-
tures have been proposed to improve transaction anonym-
ity in Bitcoin towards malicious peers. Dandelion [4] and
Dandelion++ [18] have been specially designed to provide
anonymity when broadcasting transactions through the Bitcoin
peer-to-peer layer; whereas the Lightning Network (LN) [30]
is a layer-2 payment channel network that addresses both
scalability and privacy challenges in Bitcoin. Characterizing
and quantifying the anonymity provided by such peer-to-peer
routing schemes, such that they can be systematically evaluated
and compared, has so far remained an open challenge.

To address this challenge, this paper proposes a Bayesian
framework to model and analyze the anonymity provided
by peer-to-peer networking schemes toward corrupted peers.
Given a network, the scheme’s routing features and constraints,
and an adversarial observation, the framework computes the
probability distributions linking observed transactions to their
possible originators. Following prior work on network an-
onymity metrics [14], [46], we quantify the uncertainty of
the adversary in determining a transaction’s originator with
the entropy of the probability distribution that relates the
transaction to its potential originators.

We remark that our anonymity analysis relies on network-
level traffic data related to anonymously routing a transaction.
Thus, the analysis is identical if originators use the peer-to-
peer routing scheme to anonymously broadcast (or to send to
selected recipients) a 280-character text message, instead of
a blockchain transaction. This makes the proposed Bayesian
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approach applicable to evaluating anonymous peer-to-peer
routing schemes in a generic sense, regardless of whether
the scheme is intended for enabling private browsing [42]
or messaging [9] instead of being cryptocurrency-related. At
the moment however, practical deployments of anonymous
peer-to-peer schemes relate to blockchain applications, and we
focus on these for our evaluation.

We further demonstrate the generality of our approach by
applying it to schemes, Dandelion, Dandelion++ and LN, that
rely on fundamentally different concepts for anonymous peer-
to-peer routing. Dandelion and Dandelion++ implement hop-
by-hop probabilistic routing (that ends in broadcast), whereas
in LN transactions are source-routed (all the way to the
intended recipient).

While our approach to computing originator probabilities is
generic, we additionally take into account the specific features
and constraints of each routing scheme under evaluation. Using
our techniques, an adversary can perform a more nuanced
analysis for identifying the source of the transaction. For
example, since LN is source-routed and transactions are re-
layed along the shortest path to the transaction counterpart,
the immediate predecessor and successor of a malicious node
in the transaction path provide valuable information to better
estimate the originator probabilities. In §IV-B we describe in
detail how this is used in the anonymity evaluation. Similarly,
multiple adversarial nodes in Dandelion and Dandelion++ can
coordinate using our proposed techniques to better identify
originators and reduce transaction anonymity (ref. §IV-A).

We implemented the general Bayesian framework as well
as the scheme-specific techniques in a software simulator to
evaluate transaction anonymity in LN, Dandelion and Dan-
delion++. The results of our analysis raise concerns on the
level of protection offered in practice by these systems. We
conducted a longitudinal analysis of LN and observe that
since its inception (in the year 2018), the network size is
steadily growing but the offered anonymity is decreasing. For
example, in the present LN topology, the median entropy is
zero when a few strategically selected nodes (e.g., top 1%
degree or centrality nodes) are adversarial, meaning that the
adversary can confidently identify the originator of more than
half the transactions they route as intermediary. Moreover,
these few adversary nodes can intercept about 99% of all
transactions making the conclusion even more worrisome.
We conducted additional experiments to further assess the
anonymity offered by LN in different scenarios (e.g., entropy
estimations considering different transaction amounts). In all
such experiments, we again observed median entropy of zero
(ref. §V-B for details).

Furthermore, our analysis of Dandelion and Dandelion++
indicates that they do not offer high anonymity either. For
example, an adversary that controls 20% of the nodes in
the Bitcoin peer-to-peer network intercepts on average more
than 70% of transactions, and to these Dandelion offers a
median entropy of less than three bits (i.e., equivalent to
uncertainty among eight possible originators per transaction).
The same fraction of adversaries in Dandelion++ intercept
roughly the same fraction of transactions, but the median
entropy is about five bits (i.e., equivalent to 32 possible origin-
ators per transaction) – thus demonstrating better anonymity in
comparison to Dandelion, even if the improvement is limited.

We increase network size in both Dandelion and Dandelion++
to analyze whether anonymity increases accordingly, as it
would be expected given that network scaling enables larger
anonymity sets [15]. We find that the anonymity offered by
both Dandelion and Dandelion++ remains constant instead of
increasing with network size, implying that scaling the Bitcoin
peer-to-peer network would not result in better anonymity with
these schemes.

To summarize the main contributions of this work:

• We propose a generic Bayesian framework to evaluate
network-level anonymity in peer-to-peer networks, includ-
ing both hop-by-hop and source-routed schemes.

• Using our framework, we model and evaluate three
schemes, i.e., Dandelion, Dandelion++ and Lightning
Network, that have been proposed and deployed to sup-
port transaction anonymity in Bitcoin.

• We present detailed evaluation results for the aforemen-
tioned schemes and observe that they generally offer poor
anonymity to transactions.

• We discuss and recommend changes that can lead to
improving anonymity in these schemes.

II. BACKGROUND

A. Bitcoin Network

Bitcoin consists of a P2P network of nodes that commu-
nicate via TCP [38]. When a Bitcoin node receives (or gener-
ates) a transaction, it further broadcasts the transaction to its
neighbours within the network. The neighbours then broadcast
the transaction to their neighbours and so on. This process
is iterative and after some time the transaction information
reaches all the Bitcoin nodes.

At the application layer, a Bitcoin node is identified by its
public key, whereas at the network layer, it is identified by its
IP address. In order to provide anonymity for the originator
of the transaction, the originator node’s IP address and public
key should remain unlinkable. This is important because all the
Bitcoin transactions generated by an originator are stored on a
public blockchain in plain text along with the their public key.
Notably, if the originator’s public key can be linked to its IP
address, the transaction would be completely deanonymized.

Prior work has demonstrated various deanoymization at-
tacks on the Bitcoin network [2], [1], [35]. These attacks
typically introduce a “supernode” (adversary node pretending
to be a normal Bitcoin node) that connects to all Bitcoin nodes
and observes the timing of transactions broadcast by other
nodes. In such a situation the originator node is likely the
first to be seen broadcasting the transaction. Since transactions
include their originator’s public key, the supernodes are able
to associate transaction public keys to their originator IP
addresses with an accuracy of up to 30%. To mitigate such
attacks, Bitcoin introduced an alternative approach known as
diffusion, where each node waits for a randomized amount of
time (chosen independently from an exponential distribution)
before broadcasting transactions to its neighbors on the Bitcoin
network. It was however later shown that this diffusion does
not provide much anonymity either [19], [20].

More recently, Dandelion [4] and Dandelion++ [18] have
been proposed to offer theoretical anonymity guarantees to
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cryptocurrency networks. These schemes are not yet deployed
on the Bitcoin network but are however under considera-
tion [8]. In addition, the Lightning Network is a payment chan-
nel network that aims to address scalability as well as privacy
concerns of Bitcoin, including network anonymity. Lightning
Network is a functional and deployed system (with about 10K
active nodes) that is currently integrated with Bitcoin as a
layer-2. In this paper we model and evaluate the anonymity
properties offered by Dandelion, Dandelion++ and Lightning
Network. We now briefly introduce these approaches.

B. Dandelion

Dandelion [4] was designed to enhance network anonymity
for Bitcoin by making it harder to link a transaction to the IP of
the node that originated it. When a node generates a transaction
in Dandelion, it does not directly diffuse it to the Bitcoin
network, but instead forwards it to just one of its Bitcoin
network neighbours. The neighbour node then tosses a biased
coin and decides to either forward the transaction to one of its
own neighbours, or to diffuse it. If it forwards the transaction
to a neighbour, the process is repeated, until a node eventually
diffuses the transaction. Transactions are thus forwarded a
random number of hops (following a geometric distribution)
before being finally diffused in the Bitcoin network. The
adversary may still identify the diffuser node [19], but since
this is a different node than the originator, the identity of the
originator remains obfuscated.

Dandelion thus propagates transactions in two phases: (i)
stem (or anonymity) phase, and (ii) a fluff (or diffusion) phase.
For routing transactions in the stem phase, a privacy-subgraph
graph is constructed from Bitcoin’s P2P graph by selecting
a subset of edges. This privacy-subgraph should ideally be a
Hamiltonian circuit (a line graph) consisting of all the Bitcoin
nodes. The fluff phase of Dandelion is simply the diffusion
process of the Bitcoin network.

In Dandelion, the node that generates a transaction never
directly diffuses it directly to the Bitcoin network, and instead
always forwards it to its successor in the line graph. Prob-
abilistic forwarding is applied from the first intermediary on:
when a node receives a transaction from their predecessor,
it forwards it to its successor with forwarding probability pf
(where 0 < pf < 1) and diffuses it with probability 1 − pf .
Thus, each transaction propagates over the line graph for a
random number of hops before entering the fluff phase, where
it is diffused in the Bitcoin network. The number of hops
follows a geometric distribution with average 1

1−pf
.

C. Dandelion++

Dandelion++ [18] builds and improves upon Dandelion. It
relaxes some of the idealistic assumptions made in Dandelion
that may not likely hold in practice, in particular that: (1)
each node generates exactly one transaction, (2) all nodes
strictly adhere to the protocol, (3) all nodes run the Dandelion
protocol. The authors of Dandelion++ further demonstrated
that violations of these assumptions can lead to serious dean-
onymization attacks in Dandelion.

Similar to Dandelion, Dandelion++ operates in two
phases—stem and fluff. Unlike Dandelion however, it does
not use a line as the privacy-subgraph of the stem phase;

instead, it constructs a quasi 4-regular graph where each node
should have both indegree and outdegree of two (i.e., two
predecessors and two successors). Thus, when a node receives
a transaction from any of its predecessors, it forwards it to any
one of its two successors with probability pf/2, and diffuses
the transaction into the Bitcoin network with probability 1−pf
(i.e., transaction enters into fluff phase).

D. Lightning Network (LN)

LN [41] is a payment channel network (PCN) that was
primarily proposed to address the scalability concerns of
Bitcoin. In this network, two peers use the Bitcoin blockchain
to open and close payment channels between them. Using
these channels, peers can make payments between themselves
without having to use the Bitcoin blockchain. LN not only
supports direct transactions between peers that share an open
channel, but indirect as well. Users who have not established
a direct payment channel can still transact through other LN
participants that act as intermediaries in the PCN. These
intermediaries are incentivized to route payments by a fee that
they can charge for the payments they forward.

LN can be easily represented as a graph consisting of (1)
nodes (users) that generate and forward transactions; (2) edges
(payment channels between users); and (3) edge weights ( e.g.,
fee charged for routing a transaction via that channel). An up-
to-date snapshot of the full LN graph is maintained at each
node. When some node (Alice) wants to make a payment to
another node (Bob) to which it is not directly connected, Alice
first computes the shortest path to Bob (using Dijkstra) in the
network that charges the lowest fee (while also minimizing
other factors such as the wait time in case of payment failure).
Once Alice has computed the path, she encrypts the transaction
multiple times using the Sphinx packet format [10]. Sphinx
conceals the position of the node in the path and thus Alice’s
successor cannot tell that it is the first node after the originator,
and neither can Bob’s predecessor determine that Bob is the
recipient based on Sphinx packet headers.

There exist multiple LN client implementations, such as
LND [31], c-lightning [6] and eclair [16], with LND being
the most widely used (more than 90% of clients [28], [44],
[37]). In all these implementations, senders find paths to
recipients using the Dijkstra algorithm mentioned above. Each
implementation uses, however, a slightly different cost function
for determining edge weights in the graph, depending on
factors such as the fees, timelock, and transaction amount. For
example, the LND cost function is defined as:

cost = tx amount ∗ proportional fee + base fee +
tx amount ∗ timelock ∗ rf + bias factor

where tx_amount is the transaction amount to be transferred,
proportional_fee is a fee that depends on the transaction
amount, and base_fee is a fixed fee amount for routing
a payment via the channel. The timelock represents the
amount of time required by the channel to obtain its fee in
case of a successful payment, while rf is the risk factor
accounting for the transaction amount and the time during
which the amount may be unavailable in case of a payment
failure (in the LND implementation the value of rf is in the
order of 10−9). Lastly, the bias_factor accounts for past
payment failures via this channel, taking into account when
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they happened: a recent failure within the last hour introduces
the largest bias, which then decreases exponentially with time
as 100/(1− 1

2t ), where t is the number of hours elapsed since
the failure was observed [29].

Notably, LND’s cost function prioritizes fees as the major
criteria for selecting paths, as the timelock parameter is heavily
scaled down via the risk factor, and the bias is relevant after a
failure has occurred. Other implementations prioritize different
aspects, with c-lightning favouring lower timelocks and eclair
favouring capacity and age [29].

III. THREAT MODEL AND ANONYMITY METRIC

There are two main threat models of interest in network
anonymity: global passive adversaries and adversaries that
control a subset of corrupted nodes. The three schemes studied
in this paper offer no anonymity protection against global
passive adversaries. Such adversaries can trivially identify
transaction originators using timing: nodes forward transac-
tions shortly after receiving them, and thus whenever a node
sends a transaction without having recently received one, the
node is an originator; if on the other hand a node sends a
transaction shortly after receiving one, then it is an intermedi-
ary. Protecting against such adversaries requires some notion of
mixing [7] and the introduction of per-node added latency [12].

We thus focus on adversaries that control a subset of nodes,
whether by setting up servers, hiring botnets or compromising
existing nodes in the network. The adversarial nodes follow
the protocols normally (the attacks are passive) but record
information that they analyze with the aim to deanonymize the
transactions of benign nodes (i.e., identify originator nodes for
each transaction).

We consider that the adversary does not have informative
priors on the activity of different nodes, and thus use uniform
priors over all benign nodes (i.e., we assume that a priori all
nodes are equally likely to generate a transaction). Note that
a non-uniform prior informed by node activity characteristics
would further reduce anonymity and facilitate transaction
deanonymization. Starting from the uninformed prior, know-
ledge of the network graph and of protocol parameters, the
adversary records observations from all of its nodes during
operations (transactions being forwarded). In particular, in LN,
the adversary takes note of its immediate predecessor (that
forwarded the transaction) as well as its immediate successor
(to which the transaction is forwarded), while in Dandelion
and Dandelion++, only the predecessor is relevant.

Combining priors, known constraints and observations in
a Bayesian framework, the adversary, obtains for each trans-
action an a posteriori probability distribution over all possible
originators. The entropy of this distribution expresses the
adversary’s uncertainty about the identity of the originator. An
entropy of zero means that the transaction originator can be
fully and certainly identified, while an entropy of b bits implies
that the effective anonymity set of the transaction is equivalent
to 2b possible originators.

Rationale for using entropy: Entropy metrics [14], [46] have
been used extensively to quantify network anonymity against
traffic analysis, as they allow for an intuitive interpretation of
how ‘hidden’ the true originator is among the other possible

originators in the anonymity set [40]. This is informative of
the adversarial confidence in each deanonymization (entropy
zero means that the adversary is completely certain of who
is the transaction originator). The metric takes into account
both the number of suspects that could be the originator,
as well as how salient some suspects are with respect to
others. Rather than simply assuming that the adversary guesses
the most likely suspect as the originator of a transaction of
interest [26], [4], our analysis considers all nodes as possible
originators, and computes their probability of being the true
originator based on the available information.1 Considering the
entropy of the distribution over all possible originators allows
to evaluate the size and scaling of anonymity sets beyond
binary successful/failed identification.

Other metrics are also possible. The Dandelion and Dan-
delion++ proposals [4] model anonymity as a classification
problem and evaluate anonymity using precision and recall,
considering a mapping (perfect match) between transactions
and originators. Based on the obtained classification accuracy,
these schemes are claimed to provide “system-wide” anonym-
ity to the transactions. In practice however, and as confirmed
in our experiments, both Dandelion and Dandelion++ may
offer zero anonymity to some transactions, and thus despite
‘system-wide’ claims, not all transactions enjoy the same level
of protection. Our approach captures these differences by com-
puting entropy per transaction and examining the distribution
of anonymity for all possible transactions.

Assumptions about network topology: Finally, we assume that
the adversary has an updated view on the nodes that compose
the network. We consider that individual nodes join and leave
the P2P network as defined in the protocols of the respective
scheme. In Dandelion(++) nodes can join or leave the network
at any moment by connecting to another peer, while in LN
nodes must create a payment channel to join the network. New
nodes may not always succeed in joining the network if the
existing network nodes do not accept incoming connections
(Dandelion and Dandelion++) or if they do not want to open
a payment channel (LN). The peer finding process in LN
is straightforward as the topology is publicly available and
updated periodically. In the bitcoin network however, nodes
learn about other peers from their connections via gossip
protocols. Moreover, node churn in these networks may impact
our analysis, which we discuss in detail later in §VII-B.

Lastly, note that our analysis is primarily based on the
network topology and the route selection policies, making
abstraction of transaction details. We however account for
transaction amounts in our cost analysis and we exploit trans-
action identifiers for easily identifying duplicate transactions
received by multiple adversary nodes. Note that identifying
likely duplicates may still be possible without identifiers by
correlating observed transaction timings.

IV. APPROACH

In this section, we describe our modelling approach.
Peer-to-peer anonymous routing schemes can be broadly di-
vided into two categories—hop-by-hop (Dandelion and Dan-
delion++) and source-routed (Lightning Network). We explain

1After calculating the probabilities of each node being the originator, the
adversary could also use other metrics e.g., min-entropy [48] (that captures
the probability of the likeliest originator) for further analysis.
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the common elements of our model first and then the specifics
for each type of routing.

Overall, our approach involves calculating the Bayesian (a
posteriori) probabilities of the possible transaction originators,
for any transaction observed by an adversary node. The entropy
of this probability distribution provides a measure of transac-
tion anonymity. We begin by introducing the basic notations
and definitions that are common to both categories, followed
by their detailed anonymity analysis.

• N is the total number of nodes in the privacy-subgraph.
• C is the total number of adversary nodes in the privacy

subgraph. Thus, N − C is the total benign (or honest
nodes) in the same privacy-subgraph.

• Bi is an event that a benign node i generated a transaction.
• Aj is an event that an adversary node j received a

transaction (as intermediary).
• P (Bi) is the probability that a benign node i generated

a transaction.
• P (Aj) is the probability that an adversary node j receives

a transaction originating from any honest node. i.e., the
sum of probabilities of each benign node generating a
transaction and forwarding it to the adversary node j.

• P (Aj |Bi) is the conditional probability of an adversary
node j receiving a transaction given that honest node i
generated it.

• P (Bi|Aj) is the conditional probability of an honest node
i being the originator of the transaction given that the
adversary node j received it.

Our aim is to find the probability distribution of possible
originators for the transactions received by adversary nodes.
These probabilities can be calculated (using Bayes’ theorem)
as:

P (Bi|Aj) =
P (Bi) ∗ P (Aj |Bi)

P (Aj)
∀i, j (1)

P (Aj) can be calculated multiplying the probabilities of
each benign node i generating a transaction (i.e., P (Bi)) and
that transaction reaching the adversary node j (i.e., P (Aj |Bi)).
This needs to be summed up for all the N −C benign nodes
in the network. Thus, P (Aj) is computed as:

P (Aj) =

N−C∑
k=1

P (Bk) ∗ P (Aj |Bk)

We consider that a priori all benign nodes are equally likely
to be the originators and thus P (Bi) = 1

N−C for all benign
nodes. Thus Eq. (1) can be reduced to:

P (Bi|Aj) =
P (Aj |Bi)∑N−C

k=1 P (Aj |Bk)
(2)

Finally, we compute the anonymity of a transaction inter-
cepted by adversary node j as the Shannon entropy of the
a posteriori distribution P (Bi|Aj), expressing the likelihood
that honest node Bi is the transaction’s originator.

H = −
N−C∑
i=1

P (Bi|Aj) ∗ log2(P (Bi|Aj)) (3)

We next describe scheme-specific strategies to account for
routing choices and constraints when computing P (Aj |Bi).

A. Hop-by-hop Routing

Both Dandelion and Dandelion++ route transactions using
hop-by-hop probabilistic routing, where each routing interme-
diary decides whether to forward to another (intermediary)
hop, or to broadcast the transaction.

1) Dandelion: As described earlier, Dandelion operates
in two phases i.e., the stem phase and the fluff phase. In
Dandelion anonymity is provided only in the stem phase (and
not in the fluff phase), and the challenge is thus to identify
the originator of a transaction in the stem phase. Hence we
model and compute the anonymity properties of Dandelion’s
stem phase.

In the stem phase all transactions are forwarded over a fixed
line graph, also known as the privacy-subgraph, that constrains
the possible routes followed by transactions in this phase. We
assume that this privacy-subgraph is known to the adversary2

and model the originator probabilities for a line graph. To do
so, we first construct a line graph, and then randomly select
a few nodes to be adversarial. As a consequence, various
partitions are created within line graph, with varying sets of
benign nodes in between each pair of adversary nodes. For
example, in Fig. 1, there are two partitions—one with benign
nodes 1 to n between adversary nodes A1 and A2 and other
with the remaining benign nodes (n+1 to m) between A2 and
A1. Thus, whenever an adversary node receives a transaction,
it knows from which partition the transaction has come, and
thus considers only the benign nodes in said partition. For
instance, if A2 receives a transaction and A1 has not seen
this transaction, then A2 is sure that the originator is one of
the nodes 1 to n. This effectively reduces the set of potential
originators for any given transaction.

A1 A2

1 n n+1m

Figure 1: Dandelion privacy-subgraph: There exist n benign
nodes between adversary nodes A1 and A2; m benign nodes
between A2 and A1.

After learning the partition NP that contains the source
of the transaction, the adversary needs to compute the condi-
tional probabilities P (Bi|Aj) for individual benign nodes in
Bi ∈ NP . Note that in this case, P (Aj |Bi) = 0 for benign
nodes Bi ̸∈ NP (Eq. (2)). For nodes Bi ∈ NP , P (Aj |Bi) is
computed as:

P (Aj |Bi) = p
hij−1
f

where hij is the number of hops between a benign node Bi and
the adversary node Aj . P (Aj |Bi) represents the probability of

2We discuss in § VII-A how the adversary can learn the privacy graph.
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the adversary node Aj receiving a transaction given that node
Bi generated it. In this case, pf and hij both have a role
in determining the probability of the transaction reaching the
adversary. The farther the benign node is from the adversary (in
hops), the smaller the probability of the transaction reaching
the adversary. Moreover, since the originator always forwards
the transaction to its successor, the adversary receives transac-
tions originated by its predecessor with probability 1.

Our model incorporates an arbitrary number of adversarial
nodes. If there are three adversary nodes (A1, A2 and A3)
present in the line graph, one would have three partitions (with
benign nodes between A1–A2, A2–A3 and A3–A1). In general,
n adversary nodes yield n partitions of the line graph and our
analysis is performed accordingly for each partition.

2) Dandelion++: Similar to Dandelion, Dandelion++ also
functions in two phases (stem and fluff) and thus many assump-
tions remain the same. However, there are some differences as
well; the most significant one with respect to anonymity is
the change in structure of the privacy-subgraph in the stem
phase. Dandelion++ constructs an approximate four regular
graph as a privacy-subgraph i.e., each node ideally should
have indegree and outdegree as two. In practice, when nodes
select two of their neighbors as immediate successors in the
privacy-subgraph, it can happen that fewer or more than two
nodes select same node as successor. Thus, for each node in
the privacy-subgraph, outdegree is guaranteed to be two, but
indegree may not always be two. For evaluating anonymity in
Dandelion++, we construct an approximate 4-regular graph and
then randomly select a fraction of these nodes to be adversary
nodes (ref. Fig. 2).

7
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4

2 1

3

A2

A3

5
8

6

10

A1

Figure 2: Dandelion++ privacy-subgraph: A1, A2 and A3

represent adversary nodes; rest are benign (honest) nodes.

Unlike with Dandelion, there are no obvious partitions
in Dandelion++. This is because in Dandelion, the privacy-
subgraph is a perfect line graph (ref. Fig. 1) and thus between
any two nodes there exist only one path. In Dandelion++
however, the privacy-subgraph is an approximate four regular
graph, thus between any two nodes there normally are multiple
paths. An adversary is nevertheless able to reduce the set of
possible originators with the following strategies.

Combining information from multiple adversary nodes: Since
all adversary nodes coordinate among themselves, they can
easily identify duplicate transactions (by simply comparing
the transaction plaintext). Adversaries only consider the first
instance when they received a transaction, ignoring subsequent

observations. This simple criteria greatly benefits the adversary
in deanonymizing transactions. For instance in Fig. 2, if
adversary node A3 receives a transaction it can surely conclude
that benign nodes 1–4 cannot be the originators. This is
because if any one of them would have been the source, the
transaction would be first intercepted by either adversary nodes
A2 or A1, and subsequently be ignored by A3. Thus only the
remaining benign nodes (5–10) in the privacy-subgraph are
possible originators.

Incorporating knowledge of the predecessor: We also take
into account the immediate predecessor p that forwarded the
transaction to the adversary node j. We denote as Ap−j the
event that adversary j received the transaction from prede-
cessor p. The probabilities P (Bi|Ap−j) can be evaluated (by
modifying the eq.2) as:

P (Bi|Ap−j) =
P (Ap−j |Bi)∑N−C

k=1 P (Ap−j |Bk)

The expression P (Ap−j |Bi) is computed as:

P (Ap−j |Bi) =
∑
TP

1

2
∗
(
1

2
∗ pf

)hij−1

where TP is the set of possible paths between benign node
i and adversary node j via the predecessor p, and hij is the
number of hops between i and j for each valid path. Note
that in Dandelion++ there can be multiple possible paths for a
transaction from an originator to reach an adversary node, as
the approximate four-regular privacy-subgraph is not a straight
line (as was the case with Dandelion). We thus consider all
possible paths (represented as TP ) from a benign node i to an
adversary node j via predecessor p, to calculate the probability
of the transaction reaching the adversary node. We sum the
probabilities over all valid paths to obtain P (Ap−j |Bi).

As in Dandelion, in Dandelion++ the transaction originator
always forwards it to the next hop (i.e., the originator never dif-
fuses the transaction). Since each node in the privacy-subgraph
has an outdegree two, any one of the two successors is chosen
with equal probability of one half. At each subsequent hop
in the path the transaction is forwarded with probability pf
(diffused with probability 1 − pf ), but once again any one
of the two successors is selected with equal probability. To
account for this, for each of the hij − 1 intermediate hops in
a path from i to j we multiply by a factor pf/2 of choosing
each successor in the path.

We now explain with an example how the above strategies
reduce the anonymity set. The first strategy i.e., sharing inform-
ation among the adversary nodes is implicitly incorporated
in the computation of P (Aj |Bi). For example, in Fig. 2,
P (AA3|B1), P (AA3|B2), P (AA3|B3) and P (AA3|B4) are
zero (for all predecessors of A3) because there is no honest
path between benign nodes (1–4) and adversarial node A3

without any other adversary node capturing the transaction
first. Thus, A3 can never be the first adversarial node to receive
a transaction originated by 1–4. Thus, in practice we end up
with six possible nodes (5–10) as originators whenever A3 is
the first adversarial node receiving a transaction.
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When taking into account the predecessor the possible
originators are further reduced, e.g., the adversary A3 receives
a transaction from node 8, it knows that 10 cannot be the
originator because there is no path between honest node 10
and adversary node A3 via the predecessor 8. This further
reduces the anonymity set to five nodes (i.e., nodes 5–9) and
is incorporated in the analysis, as the value of P (A8−A3

|B10)
is zero.

B. Source Routed

Lightning Network (LN) is a functional and scalable pay-
ment channel network with close to ten thousand active nodes.
This network employs source routing for selecting paths in the
network, meaning that the transaction originator decides on the
entire routing path to reach the node (recipient) with whom it
wishes to transact. Each intermediary in the transaction route
performs a decryption on the data packet that reveals the next
hop in the route, where it forwards the packet.

To evaluate the anonymity offered by LN, we again use
our generic approach, which calculates transaction originator
probabilities using Bayes theorem. However, when compared
to Dandelion and Dandelion++, modelling of LN has notable
differences that need to be accounted for. In hop-by-hop
routing probabilistic, routing decisions are made by each
node forwarding the transaction, whereas in source routing
the path is determined by the source and dependent on the
destination and the path fees. Route selection prioritizes paths
with lower fees along with considering other path features such
as (cltv expiry values). We now describe how we model LN
to calculate P (Bi|Aj), describing originator probabilities for
an intercepted transaction, which we then use to characterize
LN’s transaction anonymity.

Modelling approach: In LN, whenever a node i1 wishes to
transfer some amount to a node i2, the source node i1 com-
putes a “best” path along which a payment can be transferred
to i2. The path that has the optimal cumulative weight (for
the payment transfer) is selected as best path3. This weight
primarily comprises of the fees charged by individual nodes
(at each hop).

From an adversary’s perspective, once it is part of a trans-
action path as intermediary, it tries to establish the originator
of the transaction. To perform such an analysis, the adversary
first computes the best paths for each source-destination pair
and then calculates the probability distribution of originators
for the intercepted transactions. To compute the shortest paths
it employs Dijkstra’s algorithm and the originator probabil-
ities (P (Bi|Aj)) are computed using eq. 2. In addition, an
adversary can reduce the anonymity set of possible originators
by employing the following strategies.

Incorporating knowledge of the predecessor–successor com-
binations: Unlike Dandelion++, where we used only the prede-
cessor information, in LN we consider additional information
in the form of both predecessor and the successor of the
transaction routed through the adversary node. Recall that
in LN the source decides the complete transaction path, and
thus including the successor further leaks information to the
adversary.

3The complete LN topology (nodes, edges and weights) is known to each
LN node.

For any originator i and adversarial intermediary j, we
further account for j’s predecessor p and successor s in the
transaction route. We denote as Ap−j−s the event that a
transaction received by adversary j from predecessor p is next
routed to successor s. The probabilities P (Bi|Ap−j−s) are
calculated for each subpath p− j − s as:

P (Bi|Ap−j−s) =
P (Ap−j−s|Bi)∑N−C

k=1 P (Ap−j−s|Bk)

The expression P (Ap−j−s|Bi) is computed as:

P (Ap−j−s|Bi) =
SPi(p−j−s)

SPi

where SPi is the total number of shortest paths that originate
from i and SPi(p−j−s) is the total number of paths that
originate from benign node i and pass through the nodes
p− j − s, in that order.

We illustrate with a simple example how the inclusion
of both the predecessor and successor allows for refining
originator probabilities and better identifying the originator.

4

3

8

7

5

2

1

A1

9

6

Figure 3: Reducing the anonymity set in LN: Based on the
predecessor and the successor of the transaction potential
source nodes can be divided into disjoint sets.

Consider a sample LN topology shown in Fig. 3. If we take
into account the predecessor node from which the transaction
has been received, the potential originators are divided into two
distinct sets: benign nodes 1–6 (corresponding to predecessors
3 and 5) and benign nodes 7–9 (corresponding to predecessors
7 and 9). Considering predecessor 3, if we now include the
successor 5 and consider the subpath 3-A1-5, the anonymity
set can be further reduced. Assuming that all edge weights are
equal, the best paths from nodes 6, 1, 4 and 5 will not follow
the subpath 3-A1-5, but the best paths from nodes 2 and 3
will. Thus, if the adversary observes a transaction coming via
predecessor 3 and going to successor 5, the anonymity set will
only contain two possible originator nodes, i.e., 2 and 3.

Thus, by incorporating predecessor and successor inform-
ation of a received transaction, an adversary can reduce the
set of potential originators. Note that in Dandelion and Dan-
delion++ only the predecessor information is useful to identify
the originator, as the successor is unrelated to any originator
choice.

Combining information from multiple adversary nodes: We
employ an additional simple technique to combine the inform-
ation gained by multiple adversaries. We leverage the fact that
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(a) LN path with three adversary nodes A1, A2 and A3
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(b) We ignore the all intermediate nodes (including A2) and consider
A1, A3 as one adversary node between benign nodes 1, 2, 5, 6.

Figure 4: Subpath computation when multiple adversary nodes are on the same path in LN.

multiple adversary nodes can recognize that they are part of
the same path for a particular transaction in the LN. This is
possible because in the LN, every transaction has a unique
identifier that can be seen by all the nodes on the said path.
Even if such identifier was not available, adversarial nodes may
be able to establish they are on the same path by correlating
transaction timing and amount.

To account for paths that contain multiple adversary nodes,
we first examine the set of shortest paths and find those
that have multiple adversaries as intermediaries. We then
identify the first (closest to the originator) and last (closest
to the destination) adversary nodes on paths that contain
multiple adversaries. All the nodes in between these adversary
nodes (including other adversary nodes) are ignored. Next, we
consider the predecessors of the first and successors of the
last adversary node and redefine the combined subpaths. For
example in Fig. 4, the combined subpaths for adversary nodes
A1 and A3 are 1-(A1-A3)-5, 1-(A1-A3)-6, 2-(A1-A3)-5 and
2-(A1-A3)-6.

Combining multiple adversaries may reduce the set of
candidate originators compared to individually considering the
adversary nodes. For example in Fig. 4, nodes 3 and 4 will not
be considered as originators as they could not have selected
the best path that would involve both nodes A1 and A3.
However, if A3 and A1 would have individually performed
an analysis, they would have considered node 3 and 4 as
candidate originators. Thus, the combination of A1 and A3

further narrows down the possible originators compared to
adversary nodes that would not share their observations.

Entropy computations for best-k paths: Arguably, LN trans-
actions do not always follow the best path, e.g., when the
transaction amount is higher than the payment capacity of the
path or when a node in the path is offline and the transaction
has to be rerouted through a different path. Additionally, it
is possible to intentionally introduce randomness in the path
selection at the client side—rather than selecting by default the
best path, clients could select the path by drawing it randomly
from a set of good paths. Introducing randomness in the path
selection can lead to enhanced anonymity.

The most accurate way to evaluate the impact of routing
randomness due to payment failures is to recreate the exact
rerouting behavior specified in the LND path selection al-
gorithm. This involves modeling node failure rates as well
as keeping a log of past (failed) transactions to compute the
bias factor (ref. Sec. II-D) when retrying after failed payments.
In addition, an accurate evaluation would require the real-time
directional balances of all channels [29], which are by design
not publicly available. This approach is therefore non-trivial

to implement in practice.

We instead evaluate the impact of randomness in path
selection with a simple model that makes abstraction of the
various possible sources of randomness and their specific
patterns, while capturing the uncertainty introduced by the
existence of multiple possible paths between a source and a
destination. The strategy involves computing the k-best paths
(using Yen’s algorithm) between each source–destination pair
in LN, and considering that any of them may be used for
routing the transaction. In these experiments, the originator
selects a path uniformly at random among the set of best-k
paths instead of deterministically choosing the best path.

Given that rerouted paths are likely in the set of best-
k paths (as even after rerouting the LND routing algorithm
majorly optimizes for the same factors as before rerouting),
we argue that this strategy approximates rerouting behavior
for the purposes of anonymity evaluation. Moreover, if the
client waits to first recover the funds from a failed payment
before retrying the transaction, the impact of the bias factor
is minimal (details in §VI), making our approximation more
realistic.

Note that the evaluation method for calculating transaction
originator probabilities remains the same as in the single best-
path scenario, except that in this case the set of possible paths
includes the best-k paths for every source-destination pair.

V. ANALYSIS AND RESULTS

We implemented in Python a simulator to evaluate an-
onymity for Dandelion, Dandelion++, and LN. At a high
level, our simulator generates a network, assigns some nodes
to be adversarial, and implements the evaluation approaches
presented in the previous sections. In the simulations, all
honest nodes generate an equal number of transactions. The
simulator first calculates the fraction of transactions captured
by the adversary nodes; then, for each intercepted transaction,
it computes the entropy of the probability distribution over
all possible originators. We represent the results in a box plot
that shows the distribution for all the intercepted transactions.
These plots indicate the range, median, quartiles, and outliers
of the obtained entropy values for the intercepted transactions.

A. Hop-by-hop Routing

As described in §II, both Dandelion and Dandelion++ route
transactions over a privacy subgraph, constructed either as a
line graph or as an approximate 4-regular graph, depending on
the scheme. The three key variables for the anonymity of such
routing schemes are: the forwarding probability (pf ); the total
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(a) Dandelion (b) Dandelion++

Figure 5: Entropy vs. forwarding probability pf : With increasing the forwarding probability entropy increases.

(a) Dandelion (b) Dandelion++

Figure 6: Entropy vs. total nodes: With increasing the total number of nodes and keeping the adversary nodes as fixed (1%), the
entropy does not increase.

(a) Dandelion (b) Dandelion++

Figure 7: Entropy vs. colluding nodes: With increasing the fraction of colluding nodes entropy decreases.
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number of nodes (N ), and the number of adversary/colluding
nodes (C). We conduct three sets of experiments to isolate the
impact of each variable on anonymity:

1) Keeping C and N fixed, we varied pf .
2) Keeping C and pf fixed, we varied N .
3) Keeping N and pf fixed, we increased C.

To conduct the experiments, we first generate a random
2-regular (Dandelion) or 4-regular (Dandelion++) graph, ran-
domly labeling some nodes as adversaries. Honest nodes
then generate transactions, some of which are intercepted by
adversaries in the stem phase. For each intercepted transaction,
we compute the anonymity of its originator. The previous
steps are repeated a thousand times with different adversarial
node placements. The box plots in the figures contain all the
transaction anonymity results computed across these thousand
iterations.

1) Impact of forwarding probability (pf ) on anonymity:
Previous studies [18] used relatively smaller network topolo-
gies (e.g., 100 nodes network) to study the anonymity offered
by these schemes. We take the evaluation a step further and
simulate larger networks. We constructed privacy-subgraphs
with N = 1000 total nodes considering C = 10 nodes are
corrupted (i.e., 1% of N , which we re-randomized for each
run). We vary pf from 0.1 to 0.9 and for each value of pf we
measured the anonymity for 1000 simulation runs.

Fig. 5 depicts the results. We observe that increasing pf
increases anonymity, which is to be expected as a higher
pf increases the transaction’s path length, which makes it
harder for the adversary to determine the source of the target.
However, we remark that even with very high pf = 0.9 and
just 1% adversary nodes, the median anonymity value is 5
bits for Dandelion and 7 bits for Dandelion++. This means
that the effective size of the anonymity set of originators is,
respectively, in the order of 32 and 128 originators, out of 990
potential originators.

2) Impact of total number of nodes (N ) on anonymity: In
our second set of experiments we fix pf = 0.9 (highest an-
onymity) and instead increase N , while keeping the fraction of
compromised nodes constant at 1%, i.e., C = 0.01·N . For each
value of N we again simulate and obtain 1000 samples, each
taken with a random placement of adversaries in the graph. A
larger N allows a network to increase the anonymity offered
to transactions. As shown in Fig. 6, however, these schemes do
not capitalize on the network size increase and instead offer a
level of anonymity that remains roughly constant. Even when
N = 5000, the median (and maximum) entropy value is below
5 bits for Dandelion i.e., an effective set of 32 originators.
This is because benign nodes that are far from adversary
nodes in the privacy subgraph do not contribute much to
the anonymity of transactions intercepted by an adversary.
For example, in Dandelion, assuming a benign node i is 35
hops away from some adversary node j, the probability of a
transaction generated by i reaching j, would be pf

34, which
is very small. Thus, this node would have an insignificant
contribution in the final computation of entropy because it
is highly unlikely that node i could be the originator of any
transaction observed by adversary j. Furthermore, if there is
another adversarial node in the path between i and j, then the
adversary can be sure that i is not the originator of a transaction

first seen by node j. Due to these effects the increase of N
does not translate into an increase of transaction anonymity.

3) Impact of adversary nodes (C) on anonymity: In the last
set of experiments we set N = 1000 and pf = 0.9 and vary
C from 5% to 50% of N . For each value of C we select
1000 samples (each with randomly placed adversary nodes).
Our results paint a grim picture—e.g., in Dandelion (ref. Fig.
7a) with 20% adversary nodes, the median entropy is only
three bits i.e., effective anonymity set of 8 potential originators
(ideally it should have been 850). Moreover, an adversary
with 20% of nodes intercepts 71.5% of all transactions. By
comparison Dandelion++ performs better for the same level
of compromise. Fig. 7b shows that with 20% adversary nodes,
the median effective anonymity set is 32 (5 bits), for > 66%
of transactions that are intercepted.

B. Source Routing

To measure the anonymity offered by LN, we required
a dataset with its topology since a graph cannot be al-
gorithmically generated to be representative of LN. Thus, we
downloaded LN’s different real-world topology snapshots from
[32]. We first present our analysis of LN’s December 2018
snapshot, consisting of 1202 nodes and 6196 edges. Afterward,
we present a longitudinal analysis of how the evolution of LN’s
topology impacts the anonymity it offers.

Given an LN snapshot, we compute the best paths between
every pair of LN nodes in the graph. We then consider that
each benign node sends one transaction to every other node
in the network. Considering that some nodes are adversarial,
we evaluate the anonymity of transactions using the approach
presented in §IV-B for each of the transactions between benign
nodes intercepted by the adversary, i.e., transactions whose
route includes at least one adversarial intermediary node.

1) Strategic selection of adversary nodes: A node with many
neighbors may observe a large number of transactions that are
relayed through it. Controlling such nodes is thus ideal for the
adversary. We consider adversaries that control a small number
of top-degree nodes to evaluate the threat that large malicious
nodes pose to LN users. Our results in Fig. 8 show that if the
adversary controls the top 1% nodes, the median entropy is 3
bits, and the first quartile is zero. This means that for half of
the received transactions, the effective anonymity set is just 8
possible originators out of twelve hundred LN nodes, and for
half of those (a quarter of the total), the transaction originator
can be uniquely identified. The adversary can better determine
the transaction originator as it controls more nodes, with the
median entropy dropping to zero when the top 10% nodes are
adversarial.

High-degree nodes in LN route a disproportionate fraction
of transactions, which enables an adversary that controls a
few high-degree nodes to intercept significant amounts of
transactions. Controlling 1% of top degree nodes allows the
adversary to observe more than 79% of transactions, and this
percentage grows to ≈ 99% when the adversary controls 10%
of top degree nodes. We discuss in Sec. VII-C the implications
of some nodes having such a disproportionate influence.

Additionally, we tested the attack with an adversary that
selects nodes with the highest betweenness centrality (rather
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Figure 8: Entropy vs node degree: In each sample, top node
degree nodes (e.g., 1%) were selected as adversary nodes.

than a high degree). Nodes with the highest betweenness
centrality are those that appear most frequently in the best
paths between other nodes, and can thus intercept a large
fraction of transactions. The results were very similar to those
obtained when selecting adversarial nodes by top degree,
indicating that both adversarial strategies are equally effective.

2) Measuring anonymity considering best-k paths:

As discussed earlier, a node may not always select the
cheapest LN path for routing a transaction, choosing instead
randomly from the set of k cheapest paths, some of which may
be slightly more expensive than the minimum. This introduces
less determinism in LN routing, which should have a positive
effect on transaction anonymity. To evaluate the impact of
this effect, we compare results for networks with identical
parameters but different route selection: the first network has
deterministic path selection (k = 1), where the best path is
always chosen, and a second network that selects the path
uniformly at random among the best 5 paths (computed using
Yen’s algorithm). We observe that increasing the possible paths
does not have much of an impact on anonymity. For instance,
Fig. 9 compares the two scenarios considering the top 5%
degree nodes as adversaries. In both cases, the median entropy
is just 1 bit. We saw a similar trend for other adversarial
fractions as well.

3) Longitudinal analysis: The LN has grown significantly in
the last years. Compared to the December 2018 snapshot used
in the previous experiments, by May 2021 the LN includes
more than 9300 nodes and ≈ 52K edges, with the largest
connected component containing more than 8100 nodes and
≈ 51K edges. Here we examine if the scaling of LN has had a
positive impact (as one might expect) on the anonymity offered
to transactions. To that end, we perform a longitudinal analysis
for different LN snapshots (for the years 2018 to 2021). As
previously mentioned, the initial LN topology consisted of
1202 nodes and 6196 edges. But, in 2019, nodes increased
by 2724 and edges by 37490; in 2020, the network further
grew and had a total of 5254 nodes and 60970 edges.

Once again, we use node degree as criteria to select the
adversary nodes, choosing 1% of the top degree nodes as
adversarial for all the snapshots and performed the analysis.

Figure 9: Entropy under best-k paths: Best-1 and best-5 paths
were selected; for both of them top-5% degree nodes were
selected as adversary.

Contrary to expectation, our results reveal that transaction
anonymity decreases with the growth of the network whereas
the fraction of transactions intercepted by the adversary nodes
increases (ref. Fig. 10). For the 2021 snapshot, an adversary
controlling the top 1% nodes can intercept more than 99% of
the total transactions and completely deanonymize half of them
(median entropy is 0 bits). Even for most of the remaining
transactions the entropy is low (less than 3 bits), barring a
few lucky ones. This means that a few strategically chosen
adversary nodes can deanonymize a major fraction of all the
transactions in the network. Such observation can be attributed
to the fact that, LN has a scale free topology i.e., a few
influential nodes capture a large fraction of routing paths. For
instance, when we analysed the 2021 topology, we found 6026
nodes with zero centrality, 1483 nodes with centrality between
zero and one and only 604 nodes with centrality values greater
than one, highlighting the disproportionate routing centrality
(see VII-C for more details).

Figure 10: Entropy variation over time (in years): We select
top 1% degree nodes as adversaries and compute the entropy.

4) Impact of transaction amount on anonymity:

Throughout our analysis we assume that clients generate
transactions of minimal amount. Thus for computing shortest
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paths between any two given nodes in LN, we considered all
possible paths (consisting of all possible channels with non-
zero capacity) in the LN snapshot. Thus our results provide an
upper bound on the paths that can be selected for Dijkstra’s
computation.

However, in practice the adversary can perform an even
more precise analysis if it considers the exact amount being
transferred in the transaction. Transactions with larger amount
can only be relayed via a subset of all possible paths i.e.,
only those paths that have payment capacity at least equal to
transaction’s amount. This reduces the total number of paths
to be analyzed and thus the anonymity set. Moreover, it might
also happen that for such bigger transactions, from some nodes
there are no paths with adequate capacity to perform the
transaction. This could further reduce the anonymity set for
higher amount transactions.

Thus, we conducted experiments considering the latest LN
topology and different transaction amounts, and evaluated their
impact on transaction anonymity. In LN, the total channel
capacity (between the two peers) is publicly known, but the
exact capacity in each direction is unknown. Thus in our
analysis, we assume that half of the total capacity of the
channel is available in either direction. Using this assumption,
we filter out channels whose capacity does not support a
given transaction amount and perform the analysis on the
remaining LN graph. This leads to network partitioning—
one big largest connected component (LCC) and then multiple
small components (with maximum three nodes in them). For
instance, our analysis of $10 transactions amount yields the
LCC of 7211 nodes and other 1985 small components. As the
transaction amount increases the size of the LCC decreases:
for $50–4356 nodes, $100–3196 nodes and $500–1468 nodes.

Fig. 11 depicts the entropy distribution for the various
transaction amounts when the top 1% high degree nodes are
selected as the adversary in the latest LN topology. The median
entropy is zero for all amounts and, as expected, increasing
transaction amount reduces its anonymity due to the reduction
in possible transaction routes.

Figure 11: Entropy vs transaction amount: We select top 1%
degree nodes as adversaries and compute the entropy.

VI. IMPLEMENTATION DETAILS

We now present details about our simulator and how we
created topologies and implemented routing for Dandelion,
Dandelion++, and LN.

Simulator: We developed our own simulator to evaluate
the three considered schemes under different settings. Our
simulator consists of the following components: (1) Pre-
processing scripts for generating (or importing) topologies. (2)
Configuration files that contain information about topology and
tunable parameters (e.g., pf , N , C, sample size etc.). (3) The
compute engine that instantiates the network and computes
the intermediate results that are logged to files. (4) Scripts to
process the logs, calculate results (e.g., entropy), and plot the
graphs. The simulator is written in Python and has about 3K
lines of code.

In general, our analysis required heavy computations on
graph topologies e.g., in the LN topology consisting of more
than 9K nodes and more than 51K edges; we needed to
compute Dijkstra shortest paths between all pairs of nodes.
Thus, we ensured that our compute engine is a highly par-
alleled program that spawns different threads for computing
originator probabilities and, eventually, the entropy. To achieve
parallelization, we used multiprocessing Python library.
We performed our analysis on two servers with Intel Xeon
processors, each with 128 GB RAM and 20 physical cores.
We will open-source our simulator upon paper publication.

Topology: The topologies for Dandelion and Dandelion++ are
constructed with their specified constraints i.e., line graph for
Dandelion and quasi 4-regular graph for Dandelion++, using
the networkx Python library. For LN, we used the real-
world snapshots that were obtained from [32]. We extract the
information about channels, nodes, and channel policies (fees,
timelock values, etc.) from these snapshots for our analysis.

Routing: The routing policy for Dandelion(++) is implemen-
ted as specified in the original paper, with each hop tossing
a biased coin to decide whether to forward the transaction to
the next hop in the privacy subgraph or broadcast (diffuse) it
to the network.

LN, however, has multiple client implementations (LND,
c-lightning, and eclair) with variations in how they construct
paths [50], [29]. For our analysis, we used LND’s implement-
ation, as the majority of the nodes in the LN (> 90%) use
it [44], [37]. The routing algorithms of the other implement-
ations can be easily incorporated by modifying the weight
function before calculating the best paths using Dijkstra.
Note that the results of a related LN evaluation [28] reveal
that anonymity sets are almost identical with and without
considering other less used client implementations, i.e., eclair
and c-lightning (ref. Sec.5.4 in [28]). Accounting for these
other client implementations should thus have no impact on
the overall conclusions on LN’s anonymity.

More specifically, in the implementation we use the LND
cost function when selecting transaction paths. In almost
all our analyses (except for the one that studies different
transaction amounts), we assume the transaction value to be of
the minimum amount, so as to consider the maximum number
of possible paths for the transaction. Note that this constitutes
the worst-case scenario for an adversary trying to identify the
transaction originator, who has an easier task identifying the
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originators of transactions with higher amounts for which some
paths can be eliminated due to having insufficient capacity.

One simplification we make is that we do not implement
LND’s rerouting algorithm for failed transactions,4 partly
because considering the minimum amount for transactions
minimizes the chances of payment failures. In cases where
payment does fail, a client has to wait for a minimum duration
of 40 bitcoin blocks (going as high as 144 blocks) i.e., about a
minimum of 6 hours to get back the invested funds in HTLCs.5
If the client waits to get the funds back from the network before
attempting to conduct the transaction again, the rerouted path
is likely to be the same as the original path. This is because,
after six hours, the value of the bias for the channel that failed
the transaction becomes almost equal to the bias without a
payment failure (98.61% of the original value after 6 hours);
meaning that the impact of payment failures on subsequent
path selection is rather minimal.6

VII. DISCUSSION

A. Graph Learning Attacks

In order to successfully deanonymize the source of a
transaction, the adversary must know the underlying network
topology: the complete network graph in case of source
routing i.e., LN; and the privacy-subgraph, i.e., line graph
for Dandelion and 4-regular graph for Dandelion++, in hop-
by-hop routing schemes. Obtaining LN topology is trivial, as
every node maintains a complete up-to-date topology. A locally
available topology is essential for computing paths and routing
payments through the network. Obtaining a privacy-subgraph
is relatively harder, but still possible. In Dandelion, x% ad-
versary nodes can easily infer the positions of about 2x%
benign nodes, as they know their immediate successor and
predecessor in the line graph. Similarly, in Dandelion++ the
information of approximately 4x% nodes is directly available.
The adversary can employ different techniques to infer the rest
of the privacy subgraph. One such approach consists of sending
transactions to honest nodes whose successors in the privacy
subgraph are yet to be identified, then observe who difusses
those transactions [20]. The transactions sent to honest nodes
to learn the graph may be generated by the adversary, but not
necessarily. The adversary may simply relay any transactions
generated by other nodes that are sent to its node.

When many transactions are routed via an honest node,
the distribution of nodes that diffuse these transactions allows
inferring the successors of that target node in the privacy sub-
graph. This is because the successors’ frequency of diffusion
is directly dependent on the number of hops in the privacy
subgraph between the target and the successor, being highest
for immediate successors and decaying geometrically with the
number of hops. The adversary can combine this information
with knowledge of the bitcoin graph7 to significantly narrow

4Rerouting is generally challenging to model accurately in practice. It
requires obtaining historical payment failure data (for each node) and the real-
time channel balances to anticipate payment failures [29], which are publicly
not known.

5It takes roughly 10 minutes to mine one bitcoin block.
6If the client wishes not to wait, he would ideally prefer using some

alternative means to pay.
7Although the bitcoin graph is not publicly available. There are various

researches [13], [36], [21], [23], [17] that demonstrate how the bitcoin graph
can be reconstructed with high accuracy.

down the possible graph neighbours and strengthen its infer-
ence, taking into account that only the 8 immediate neighbors
of a node in the bitcoin graph are potential successors in the
privacy subgraph (since privacy subgraph is derived from the
bitcoin graph).

We simulated this approach and observed that typically
2 of the 8 bitcoin graph neighbours of a node diffuse the
most transactions, and can thus be easily identified as the
successors of the honest node in the privacy subgraph. We
were able to learn more than 98.5% of the privacy subgraph
of Dandelion++ when we sent 100 transactions per honest
node. In Appendix B, we explain our approach in a step-by-
step manner and also present some additional techniques that
further optimize the overall approach, lowering the number of
transactions required to learn the graph. Overall, by analyzing a
sufficient number of transactions, the adversary can reconstruct
the privacy subgraph.

In practice, the adversary may have uncertainty about the
placement of some nodes in the graph, e.g., due to churn in
the network the position of new nodes may not be known.
A simple strategy that can be adopted by the adversary is
to consider all such nodes as potential originators for every
transaction. If the fraction of such nodes is low, the overall
entropy will not vary significantly. For instance, when the
complete graph is perfectly known and 10% of the nodes are
adversarial, we obtain the average entropy of 7 bits (ref. §V-A).
If the adversary is uncertain about the placement of 2% of
the nodes, the observed entropy increases slightly to 7.15 bits.
Note that if a significant fraction of the graph is unknown, then
the anonymity will significantly increase (due to the lack of
information on the majority of nodes). A scenario with a large
unknown fraction is however less likely, given the effectiveness
of the proposed approach to infer the privacy subgraph with a
limited number of transactions.

B. Impact of Churn

Churn refers to nodes joining and leaving the network,
which are events that happen on a routine basis in distributed
peer-to-peer networks. We thus discuss here the impact of
churn on our methods. In our analysis, we consider a passive
adversary that controls a fraction of nodes used to record
observed transactions. The adversary attempts to identify trans-
action originators by combining malicious node observations
with information about the network graph used for routing
transactions. The current network graph is either downloaded,
as in the case of LN, or inferred, as in the case of Dan-
delion(++).

With respect to churn, two scenarios are relevant: (1) a
new node joins, and (2) an existing node leaves the network.
If a new node joins the network after the adversary has
observed a transaction, the new node should not be considered
a potential originator of that transaction, and this is also
what we do. When an existing node leaves, it should ideally
be eliminated from the set of potential originators for all
transactions generated after the node went offline. However,
our current analysis still considers it as potential originator.
Note that assuming all nodes are online is a “worst-case”
scenario from the adversary’s perspective, as it considers more
nodes as potential originators than the ones that are currently
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live and available, increasing the anonymity set. Even then, we
observe low entropy values for most of the transactions. Given
a reliable way to obtain liveness information for all nodes,
the analysis can be further refined with such information,
leading to even lower entropy. This would not change but
rather strengthen the overall conclusions of our work that
the studied schemes provide low anonymity. Obtaining the
liveness information for LN is relatively easy as the topology
information is publicly available and regularly updated. On
the other hand, obtaining such liveness information for the
bitcoin P2P graph in real-time is far from trivial as the topology
information is not published and is instead learned over time
in a distributed manner.

C. Lightning Network Graph Structure

We observed that the vast majority of nodes in the LN
(for different snapshots) have (betweenness) centrality zero or
less than one, while relatively few nodes have overwhelmingly
large values of centrality. This indicates that there is “routing
centralization” within LN i.e., a few nodes capture a large
fraction of network paths, a fact already noted in prior studies
[43], [50]. The analysis by Rohrer et al. [43] of an actual LN
topology snapshot of 2019 highlighted that the node degree
distribution of LN follows power-law, suggesting a scale-free
network structure. They also demonstrated that LN can also be
classified as small-world network. i.e., nodes tend to cluster
and have a high density of edges in their cluster. Our results
indicate that the growth of LN (> 9K nodes presently) has
not diminished “routing centralization” but rather exacerbated
it. We thus turn to asking whether a change in graph structure
would improve the anonymity offered by LN, i.e.,, if the LN
graph was more balanced, with roughly similar degrees for all
nodes instead of node degrees following a power law, would
the network provide better anonymity?

Impact of change in graph structure on LN: We create
random graphs with the constraint that the average degree (k)
of nodes should remain constant (e.g., k=5). We assign weights
to the edges following a distribution similar to the actual LN
(the average fee associated with a channel is 1000 millisatoshi)
and compute shortest paths between all pair of nodes. We select
the top 1% centrality nodes as adversary nodes and compute
anonymity for the transactions intercepted by the adversary.

We observe that transaction anonymity is somewhat higher
in these balanced graphs (e.g., median 5 bits of entropy with
high standard deviation for k=5) in comparison to the actual
LN topology (median zero with low standard deviation in
the latest snapshot). The overall entropy values are however
still low and allow the adversary to significantly narrow down
the identity of transaction originators. On the other hand,
despite the overall entropy being low, in random networks
the adversary intercepts a smaller fraction of transactions
compared to the LN real topology snapshots (ref. Fig. 12). This
is because in random graphs all the nodes have similar node
degree and their centrality values are balanced (almost none
has zero centrality). Thus, a selection of top centrality nodes
does not provide much advantage compared to a selection of
random nodes – and in both cases the number of intercep-
ted transactions is moderate. This is unlike the actual LN
snapshots, where ≈ 64% nodes have zero centrality—which

allows those high-centrality nodes to become intermediaries
for a disproportionate fraction of transactions.

Figure 12: Entropy for random k-degree graph: For 1000 node
topology, we increased the average node degree, kept the edge
weights roughly same and study its impact on entropy (with
top 1% centrality nodes as adversary).

D. Comparing Results with Dandelion(++)

In our analysis we use a different metric than Dan-
delion(++) to measure the offered anonymity. We use entropy,
a metric that accounts for all possible guesses (i.e., all non-
adversarial nodes); Dandelion(++), on the other hand, uses
precision-recall metrics that only focus on the best possible
guess (e.g., predecessor is the originator), ignoring any specific
routing information known to the adversary. Thus a direct
comparison between our analysis and the Dandelion(++) is
not straightforward.

Moreover, the analysis in Dandelion is not specific to an
exact deanonymization strategy deployed by the adversary. In-
stead, the results present bounds on the precision and recall an
adversary would obtain when it follows any deanonymization
strategy. These strategies are defined as a mapping function
that always attempts to assign any given transaction to a single
originator. Such assumptions do not consider the cases where
even though the adversary cannot correctly guess the exact
sender with sufficient confidence but can know with high
probability that the sender is among a small set of senders.
For instance, let us consider that a node has a probability of
being the originator as 0.5 and another one has 0.49, with
all the remaining nodes having a combined probability of
0.01. In such a case, the Dandelion(++) matching function of
considering the highest probability node would yield the node
with 0.5 probability as the originator, whereas a more accurate
assessment would have been that the sender is one of the
two nodes with a very high probability. Such assessments are
provided by entropy as it considers the probability of all nodes
being the potential originator and then reports the effective size
of the anonymity set.

Thus, overall our results do not directly contest the analysis
presented by Dandelion(++) as they provide bounds rather than
calculating transaction anonymity sets. The bounds provided
by Dandelion(++) may still be applicable to the matching
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strategies (e.g., ‘predecessor is the originator’). However, to
measure the anonymity of individual transactions, their metric
(and analysis) is non-trivial to contextualize. To that end,
entropy reports the anonymity sets per transaction, which is
simpler to comprehend and clearly demonstrates that overall
anonymity provided to transactions is low.

Interestingly, some of our inferences are in line with what
was reported in Dandelion++. We observe that increasing the
node degree in the privacy subgraph would lead to larger en-
tropy and thus anonymity. As discussed next, similar findings
were reported by Dandelion++, where the authors mention that
if the privacy subgraph is known, then increasing the node
degree in the privacy subgraph leads to a lower precision for
the adversary and thus results in increased anonymity.

E. Improving Dandelion’s Anonymity

Our experimental results demonstrate that Dandelion and
Dandelion++ do not offer large anonymity sets against collud-
ing nodes. An important reason for this is that these schemes
use restricted routing. In Dandelion, a node can forward to just
one neighbor, whereas in Dandelion++, it can forward to just
two neighbors. Our analysis demonstrates that changing the
privacy subgraph from line to 4-regular results in better overall
entropy. Thus, we investigate if increasing node degree in the
privacy subgraph leads to further anonymity improvements.
Since the privacy subgraph is derived from the bitcoin graph,
which is itself 16-regular, this is the maximum degree that any
node in the privacy subgraph can have. Thus, we constructed a
16-regular graph of 1000 nodes and computed the entropy as
described in Sec. IV-B. We observed that with 10% adversary
nodes, the median entropy value was 7 bit (equivalent to 128
possible senders) in the 16-regular privacy graph and 4.5 bit
(23 possible senders) in the 4-regular graph.8

Thus, to achieve better anonymity, hop-by-hop schemes
like Dandelion should use the 16-regular bitcoin graph as-is
for the privacy subgraph instead of restricting it into a line or
4-regular graph. Notably, in this case, the adversary already
knows the privacy subgraph without the help of any additional
mechanisms (as described in Sec. VII-A), but is still less able
to effectively deanonymize transaction originators.

We note that the authors of Dandelion also considered
forwarding the transaction to multiple bitcoin nodes (i.e.,
more than two nodes). However, they assume that the privacy
subgraph will not be known to the adversary. With that
assumption, they argue that “diffusion by proxy” (forwarding
to any bitcoin node) is not the best strategy. It intuitively
provides too many paths for the transactions to reach the
adversary, and thus the relative mixing of packets is very
less. Hence they suggest using a line (instead of a complete)
graph as the privacy subgraph. Line graphs limit exposure to
adversary nodes, and at the same time mixing would be high
as more transactions would follow the same path.

However, in Dandelion++, the authors relax the assumption
of not knowing the privacy subgraph and analyze the two
cases—when the privacy subgraph is unknown and when it is
known. They conclude that if the privacy subgraph is unknown

8To bound the computations, we considered only 5-hop paths from the
source to the adversary nodes.

to the adversary, Dandelion’s analysis still holds. But, with a
known privacy subgraph, the trend reverses. The adversary can
easily partition line graphs and limit the set of potential senders
(as shown in our analysis in this paper). But if we consider the
k-regular privacy subgraph (with larger values k), partitioning
becomes more and more difficult, eventually leading to the set
of potential senders being all nodes in the Bitcoin network.

Overall, in Dandelion++, the authors proposed a strategy
that optimizes mid-way between the cases of known and
unknown privacy subgraphs, eventually resulting in selecting
a 4-regular privacy subgraph. However, since our analysis
shows that it is relatively easy to learn the privacy subgraphs,
Dandelion++’s analysis of known privacy subgraphs is more
applicable, which we could also verify with our entropy-based
results.

VIII. RELATED WORK

Peer-to-peer anonymity designs have been proposed over
the last decades for a variety of applications, such as web
browsing [42], messaging [9] or decentralized services [25].
Blockchain-related applications have however recently been
the main drivers for the design an implementation of peer-
to-peer anonymous routing schemes, which are needed to
protect the anonymity of transactions at the network layer. In
this work we focus on recent anonymity enhancing schemes
for cryptocurrency: Dandelion(++) and Lightning Network.
Dandelion++ is under consideration by the Bitcoin for de-
ployment whereas LN is already deployed. We note however
that our evaluation focuses on features of the anonymous
routing scheme without relying on transaction information,
which makes the framework applicable to any anonymous
routing scheme, regardless of whether it is used for routing
blockchain transactions or any other sort of payload.

It must be noted that we are not the first to propose a
probabilistic Bayesian approach to model and evaluate an-
onymity. The high-level idea has been used already in early
works such as Vida [11], which aims to estimate anonymity
for mixnets that are too large to evaluate analytically. Our
contribution is thus that for the first time, we build a gen-
eric Bayesian framework tailored to study the anonymity of
anonymous P2P routing and utilize it to evaluate concrete
schemes currently proposed or deployed in cryptocurrency
applications: Dandelion(++) and LN. Importantly, we propose
novel techniques based on specific routing properties of these
schemes to perform the analysis and show the framework’s
effectiveness.

Similarly, there are multiple researches that study LN’s
privacy and anonymity aspects. In [45], Romiti et al. demon-
strate a cross-layer attack where the LN nodes were mapped
to their bitcoin addresses. In [49] Tikhomirov et al. attempt to
perform a primitive analysis of the payment paths that may be
vulnerable to deanonymization attacks. They do so by selecting
a set of influential adversaries (high degree nodes) and find the
potential payment paths intercepted by the adversary nodes.
But adversary nodes in the payment paths cannot ensure
deanonymization as LN’s design ensures that a node on the
payment path cannot determine whether the previous hop is the
actual originator or just the forwarder. Thus, a more nuanced
analysis (as performed in our work) is required to analyze how
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and to what extent the adversary can deanonymize a transaction
for which it acts as intermediary by exploiting the anonymous
routing scheme.

Another recent work [28] by Kumble et al. studies the
impact of routing in LN on the anonymity provided to trans-
actions by exploiting LN-specific transaction characteristics.
The work considers the timelock value for each transaction
to count the number of possible originators (or receivers)
and thus estimate the size of the anonymity set (without
distinguishing between higher or lower likelihood to be the
originator). In comparison, our work calculates the individual
probabilities for each possible originator. Moreover, the focus
of our contribution is to provide a generic and flexible frame-
work that exploits routing constraints to evaluate anonymity.
Additional transaction-related information that is available to
the adversary can however be also incorporated. Thus, our
framework can be easily extended to consider the transaction
timelock values in addition to the routing algorithm details
currently considered, highlighting its flexibility to incorporate
various scheme-specific details while providing a common
evaluation platform.

Our analysis provides additional benefits as well. First,
it is not influenced by mechanisms such as shadow routing
[47], which enables a client to add random timelock values
making it difficult to guess the transaction recipient for any
on-path transaction forwarder that just looks at the timelock
values. Second, we consider transactions between each source-
destination pair, which provides comprehensive coverage of
all cases and a good estimate of the fraction of transactions
captured by the adversary nodes.

Notably, [28] considers all three LN client implementations
(LND, eclair, and c-lightning), while our work focuses on
the most widely used LND implementation (> 90%). Con-
sidering all the client implementations for evaluation is ideal,
but the analysis in [28] already shows that the additional
minority implementations do not meaningfully impact the
results: almost the same results were obtained with and without
different implementation considerations. Nonetheless, despite
methodological differences to perform the evaluation, we note
that the overall results and conclusions of both studies agree
in the assessment that LN offers poor anonymity to its users.

Moreover, LN includes additional mechanisms such as 2-
of-2 multi-signature transactions (for channel construction),
Hashed Time Lock Contracts (for payment management) etc.
[41]. The exploitation of such mechanisms to deanonymize
transactions has been studied in previous works [33], [22],
[34], [44], [39]. Our analysis makes abstraction of transaction
data and instead relies exclusively on traffic data that can be
passively collected. This makes our contribution generalizable
for evaluating the anonymity provided by anonymous P2P
routing schemes, whether they are used for routing Bitcoin
transactions or simply messages.

IX. CONCLUSION

Existing research advocates the use of anonymous P2P
routing schemes to strengthen network privacy in Bitcoin and
other cryptocurrency networks. Notably, hop-by-hop routing
solutions (Dandelion and Dandelion++) have been proposed to

anonymize the broadcast of Bitcoin transactions, while Light-
ning Network uses a source-routed scheme to provide payment
channels as layer-2 of bitcoin. In this work, we propose a
generic framework to measure the anonymity provided by such
P2P schemes. This framework relies on Bayesian inference for
computing the probability of potential originators for any given
transaction and computes the overall uncertainty on the actual
originator by measuring the entropy of the distribution. Our
evaluation of the said schemes reveals some serious concerns.
For instance, our analysis of real Lightning Network snapshots
reveals that, by colluding with a few (e.g., 1%) influential
nodes, an adversary can fully deanonymize about 50% of
total transactions in the network. Similarly, Dandelion and
Dandelion++ provide a low median entropy of 3 and 5 bit,
respectively, when 20% of the nodes are adversarial.

Overall, our study highlights a pressing need for better
network anonymity schemes in cryptocurrency networks, as
the current solutions provide poor anonymity to users. Our
simulation framework can be used not only to evaluate existing
proposals but also for designing and evaluating new solutions
with a principled understanding of how much anonymity they
will provide in concrete configurations.
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APPENDIX

A. Reduction of Anonymity Set by a Sophisticated Adversary

1) Can nuanced details of the privacy-subgraph help in
reducing the anonymity? In Dandelion++, each node has
exactly two immediate successors (and can have more or less
than two immediate predecessors) in the privacy-subgraph.
Dandelion++ further recommends that transactions received
from a predecessor should be forwarded to a fixed successor.
However, in our analysis we do not incorporate these in-
tricate details while computing entropy. This is because we
believe that its hard for the adversary to know these internal
predecessor–successor mappings of each node.
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Thus in our analysis, for every node we consider that it
sends transactions to any one of its two successors, thereby
having a more generic analysis, and recall that even without the
knowledge of these mappings we obtained very low entropy
values. Notably, if some sophisticated adversary somehow
obtains this predecessor–successor information, it can do a
more precise analysis while estimating the originator of a
received transaction.

2) Can different originator probabilities reduce the anonym-
ity? In our current entropy computations, we consider a generic
scenario, where we assume uniform priors for the originator
probabilities (P (Bi)) for each benign node i. However, if a
sophisticated adversary has additional knowledge (e.g., knows
the (average) frequency of transaction generation for each
node i), it can utilize this extra information in the analysis
by incorporating it to the priors. In such a case, adversary
would consider a different value of P (Bi) for each node i and
perform a more informed analysis that further reduces entropy.

Takeaway: In spite of the fact that we do not incorporate
the aforementioned details in our analysis (for all the three
schemes), we obtained low anonymity values under various
different settings. Our results are thus an upper bound, and
a more sophisticated adversary can certainly perform a more
precise analysis and deanonymize the transactions with even
more confidence.

B. Privacy subgraph learning

In this section we now describe the approach in detail
(mentioned in Sec. VII-A), that can be used by the adversary to
obtain the privacy subgraph in Dandelion++. Subsequently, we
also show the results obtained from simulations, and present
some heuristics to learn privacy subgraph faster and with lower
number of transactions. We now describe the procedure to
derive the privacy subgraph in simulations.

• We construct a random 16-regular graph with each node
having 8 outgoing neighbours. This is representative of
the bitcoin graph (BG).

• Next, we derive a privacy subgraph (PSG) from the BG
by selecting 2 outgoing connections randomly for each
node as the successor nodes in the PSG.

• Since the adversary nodes already know their predecessor
and successor connections, we add them to the derived
PSG. Adversary nodes would then send/forward the trans-
action via the remaining honest nodes. To ensure that
at least one adversary node is connected to all honest
nodes, every adversary node makes multiple connections
to different honest nodes (instead of two).

• The adversary will then pick an honest node through
which it will send multiple transactions and will record
the nodes that diffuse them. We simulate the stem phase
routing for these transactions. Since the forwarding prob-
ability assumed in Dandelion++ is 0.9, ≈ 10% of all
the transactions will be diffused by the successors of the
honest node in the PSG. Thus, we analyze the number
of diffusions by neighbours of the honest node in BG.
The analysis reveals that the successors of the honest
node in the PSG show significantly larger diffusions in
comparison to other successors. We thus take the two
nodes (out of the eight) with highest frequency as the

actual successors of the node in PSG. We add these
edges to the potential PSG derived by the adversary. We
send 50 transactions per honest node before analyzing the
distribution of diffusions per node.

• The previous step is repeated for all honest nodes and we
obtain a PSG.

• We then compare the derived PSG with the actual PSG
and calculate the accuracy.

Following the above steps we simulated the graph learning
attack on a BG of 1000 nodes with 10% adversary nodes.
We observed that more than 90% of the PSG was correctly
constructed. Moreover, when we increased the number of
transactions to be analysed per node from 50 to 100, the
accuracy increased to ≈ 98.5.

Additionally, in order to increase the accuracy of results,
as well as to minimize the number of transactions to be
analyzed per node, the adversary can employ extra analysis.
The adversary can not only analyze the distribution of im-
mediate successors of honest nodes, but also the successors
of the immediate successors. This would allow the adversary
to learn more edges in the graph with the same number of
transactions. It would also enable the adversary to further
verify that the successor of the honest nodes the adversary
identified are indeed correct. This is because if the successors
are correctly identified then the successors corresponding to
these successors would also show two nodes diffusing large
number of transactions

Moreover, once the adversary has learned a large part of
the PSG, it can then adopt additional strategies that may not
require sending additional transactions, thereby minimizing the
overall transactions required to learn the PSG. The adversary
can do so by ruling out successors that are already part of the
PSG and thus implicitly inferring the edges. This elimination
will help adversary limit the set of potential successors and
even in some cases will only be left with just the two
successors that are actually part of the PSG.
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